Hierarchical Recurrent Neural Network for Document Modeling
نویسندگان
چکیده
This paper proposes a novel hierarchical recurrent neural network language model (HRNNLM) for document modeling. After establishing a RNN to capture the coherence between sentences in a document, HRNNLM integrates it as the sentence history information into the word level RNN to predict the word sequence with cross-sentence contextual information. A two-step training approach is designed, in which sentence-level and word-level language models are approximated for the convergence in a pipeline style. Examined by the standard sentence reordering scenario, HRNNLM is proved for its better accuracy in modeling the sentence coherence. And at the word level, experimental results also indicate a significant lower model perplexity, followed by a practical better translation result when applied to a Chinese-English document translation reranking task.
منابع مشابه
A New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant
In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...
متن کاملDocument Modeling with Gated Recurrent Neural Network for Sentiment Classification
Document level sentiment classification remains a challenge: encoding the intrinsic relations between sentences in the semantic meaning of a document. To address this, we introduce a neural network model to learn vector-based document representation in a unified, bottom-up fashion. The model first learns sentence representation with convolutional neural network or long short-term memory. Afterw...
متن کاملDistillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کامل